![]() |
![]() |
![]() |
![]() |
脂肪由来のMSCは増殖性が高く、脂肪生検や脂肪吸引後の間質血管画分(SVF)から簡単に分離できます(9-11)。この画分には、さまざまな種類の細胞、例えば MSC、間質細胞、内皮細胞、脂肪細胞、赤血球、脂肪滴やミセルが含まれています(12)。細胞治療用途では、SVFは直接患者の治療に使用されます。総細胞数と生存率を正確に定量することは、細胞播種などの下流のアプリケーションに極めて重要です。多くのセルカウント手法では、細胞とアーティファクトの区別に失敗したり、オペレーター間で大きなばらつきが生じたりします。この問題を克服するために、NucleoCounter®はヒト、動物の脂肪由来MSCの総細胞数と生存率を決定するための効果的なプロトコールを提供します(13-18)。
NucleoCounter®を使ったSVFの総細胞の決定では、細胞懸濁液を使用機種に応じた試薬で処理することで、細胞やその他の膜封入粒子を溶解し、例えばVia1-Cassette™を使って細胞核をDAPI染色します(図2)。DAPIがDNAに特異的に結合することにより、NucleoCounter®は核DNAを含む細胞のみをカウントするため、赤血球や血小板などのDNAを含まない細胞だけでなく、細胞片(デブリ)、ミセル、細胞外小胞、脂肪滴などのSVFでよく観察されるアーティファクトをカウントすることを回避できます(18)。
1. Dominici, M., et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006. 8(4): p. 315-317.
2. Makino, S., et al., Cardiomyocytes can be generated from marrow stromal cells in vitro. Journal of Clinical Investigation, 1999. 103(5): p. 697-705.
3. Arthur, A., et al., Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells, 2008. 26(7): p. 1787-1795.
4. Horwitz, E.M., et al., Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(13): p. 8932-8937.
5. Kawada, H., et al., Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood, 2004. 104(12): p. 3581-3587.
6. Zhao, K., et al., Immunomodulation effects of mesenchymal stromal cells on acute graft-versus-host disease after hematopoietic stem cell transplantation. Biology of Blood and Marrow Transplantation, 2015. 21(1): p. 97-104.
7. Hahn, J.-Y., et al., Pre-treatment of mesenchymal stem cells with a combination of growth factors enhances gap junction formation, cytoprotective effect on cardiomyocytes and therapeutic efficacy for myocardial infarction. Journal of the American College of Cardiology, 2008. 51(9): p. 933-943.
8. Schnabel, L.V., et al., Mesenchymal stem cells and insulin-like growth factor-I gene-enhanced mesenchymal stem cells improve structural aspects of healing in equine flexor digitorum superficialis tendons. Journal of Orthopaedic Research, 2009. 27(10): p. 1392-1398.
9. Zuk, P.A., et al., Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 2002. 13(12): p. 4279-4295.
10. Mizuno, H., M. Tobita, and A.C. Uysal, Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells, 2012. 30(5): p. 804-810.
11. Gimble, J.M., A.J. Katz, and B.A. Bunnell, Adipose-derived stem cells for regenerative medicine. Circulation Research, 2007. 100(9): p. 1249-1260.
12. Astori, G., et al., “In vitro” and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells. Journal of Translational Medicine, 2007. 5: p. 55-55.
13. Kølle, S.-F.T., et al., Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial. The Lancet, 2013. 382(9898): p. 1113-1120.
14. Araña, M., et al., Preparation and characterization of collagen-based ADSC-carrier sheets for cardiovascular application. Acta Biomaterialia, 2013. 9(4): p. 6075-6083.
15. Kazantseva, J., et al., Alternative splicing targeting the hTAF4-TAFH domain of TAF4 represses proliferation and accelerates chondrogenic differentiation of human mesenchymal stem cells. PLoS ONE, 2013. 8(10): p. e74799.
16. Choi, J.S., et al., In vitro expansion of human adipose-derived stem cells in a spinner culture system using human extracellular matrix powders. Cell and Tissue Research, 2011. 345(3): p. 415-423.
17. Suga, H., et al., IFATS collection: Fibroblast growth factor-2-induced hepatocyte growth factor secretion by adipose-derived stromal cells inhibits postinjury fibrogenesis through a c-Jun N-terminal kinase-dependent mechanism. Stem Cells, 2009. 27(1): p. 238-249.
18. Miyazaki, T., et al., Isolation of two human fibroblastic cell populations with multiple but distinct potential of mesenchymal differentiation by ceiling culture of mature fat cells from subcutaneous adipose tissue. Differentiation, 2005. 73(2): p. 69-78.
19. Meirelles, L.d.S., P.C. Chagastelles, and N.B. Nardi, Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science, 2006. 119(11): p. 2204-2213.
20. Kuznetsov, S.A., et al., Circulating skeletal stem cells. The Journal of Cell Biology, 2001. 153(5): p. 1133-1140.
21. Heathman, T.R.J., et al., Expansion, harvest and cryopreservation of human mesenchymal stem cells in a serum-free microcarrier process. Biotechnology and Bioengineering, 2015. 112(8): p. 1696-1707.
22. Heathman, T.R.J., et al., Serum-free process development: improving the yield and consistency of human mesenchymal stromal cell production. Cytotherapy, 2015. 17(11): p. 1524-1535.
品番 | 容量 | ||
---|---|---|---|
941-0012 | Via1-Cassette™ | 100個/箱 | 生存率・細胞数測定 (NC-200・NC-3000) |
941-0024 | Via2-Cassette™ | 100個/箱 | 生存率・細胞数測定 (NC-202) |
910-3010 | Solution 10 Lysis buffer | 100mL | 2-Step Cell Cycle, 全細胞数測定(凝集細胞) |
910-3017 | Solution 17 | 25mL | Blood Lysis Buffer |
910-0010 | Lysis 1, 100 ml | 100mL | 細胞処理試薬 (Total Count) |