![]() |
![]() |
![]() |
![]() |

脂肪由来のMSCは増殖性が高く、脂肪生検や脂肪吸引後の間質血管画分(SVF)から簡単に分離できます(9-11)。この画分には、さまざまな種類の細胞、例えば MSC、間質細胞、内皮細胞、脂肪細胞、赤血球、脂肪滴やミセルが含まれています(12)。細胞治療用途では、SVFは直接患者の治療に使用されます。総細胞数と生存率を正確に定量することは、細胞播種などの下流のアプリケーションに極めて重要です。多くのセルカウント手法では、細胞とアーティファクトの区別に失敗したり、オペレーター間で大きなばらつきが生じたりします。この問題を克服するために、NucleoCounter®はヒト、動物の脂肪由来MSCの総細胞数と生存率を決定するための効果的なプロトコールを提供します(13-18)。
NucleoCounter®を使ったSVFの総細胞の決定では、細胞懸濁液を使用機種に応じた試薬で処理することで、細胞やその他の膜封入粒子を溶解し、例えばVia1-Cassette™を使って細胞核をDAPI染色します(図2)。DAPIがDNAに特異的に結合することにより、NucleoCounter®は核DNAを含む細胞のみをカウントするため、赤血球や血小板などのDNAを含まない細胞だけでなく、細胞片(デブリ)、ミセル、細胞外小胞、脂肪滴などのSVFでよく観察されるアーティファクトをカウントすることを回避できます(18)。

Via-1カセットとSolution 10を使用した凝集細胞の生存率と総細胞数カウント
全血をサンプルとした有核細胞の生存率と総細胞数カウント
“We need to use a cell counting device that is FDA-compliant and capable of counting Adipose-derived Regenerative Cells rapidly and efficiently. After testing several options, we found that the NucleoCounter® NC-200™ device fits our required criteria and consistently delivers rapid, reproducible and reliable results.
We did not have to perform any additional validation studies related to cell counting and viability due to the FDA’s familiarity with the instrument. Selecting the NC-200™ as our automatic cell counter saved us time during the FDA application as well as during training of the staff at the clinical sites. The quality of the device and the excellent customer service that ChemoMetec provides has been a key factor in the successful initiation of our clinical program.”
“The NC-200 provides us with accurate and repeatable results we can trust. The automated counter is capable of accurately counting the SVF cells ー even though many of the cells are stuck in clumps. This is extremely important for our procedures and the NC-200 can provide us with trustworthy repeatable results. It is easy to use, fast, and requires no maintenance/calibration. I would recommend the NC-200ー over any trypan blue/hemacytometer automated cell counters on the market.”1. Dominici, M., et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006. 8(4): p. 315-317.
2. Makino, S., et al., Cardiomyocytes can be generated from marrow stromal cells in vitro. Journal of Clinical Investigation, 1999. 103(5): p. 697-705.
3. Arthur, A., et al., Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells, 2008. 26(7): p. 1787-1795.
4. Horwitz, E.M., et al., Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(13): p. 8932-8937.
5. Kawada, H., et al., Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood, 2004. 104(12): p. 3581-3587.
6. Zhao, K., et al., Immunomodulation effects of mesenchymal stromal cells on acute graft-versus-host disease after hematopoietic stem cell transplantation. Biology of Blood and Marrow Transplantation, 2015. 21(1): p. 97-104.
7. Hahn, J.-Y., et al., Pre-treatment of mesenchymal stem cells with a combination of growth factors enhances gap junction formation, cytoprotective effect on cardiomyocytes and therapeutic efficacy for myocardial infarction. Journal of the American College of Cardiology, 2008. 51(9): p. 933-943.
8. Schnabel, L.V., et al., Mesenchymal stem cells and insulin-like growth factor-I gene-enhanced mesenchymal stem cells improve structural aspects of healing in equine flexor digitorum superficialis tendons. Journal of Orthopaedic Research, 2009. 27(10): p. 1392-1398.
9. Zuk, P.A., et al., Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 2002. 13(12): p. 4279-4295.
10. Mizuno, H., M. Tobita, and A.C. Uysal, Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells, 2012. 30(5): p. 804-810.
11. Gimble, J.M., A.J. Katz, and B.A. Bunnell, Adipose-derived stem cells for regenerative medicine. Circulation Research, 2007. 100(9): p. 1249-1260.
12. Astori, G., et al., “In vitro” and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells. Journal of Translational Medicine, 2007. 5: p. 55-55.
13. Kølle, S.-F.T., et al., Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial. The Lancet, 2013. 382(9898): p. 1113-1120.
14. Araña, M., et al., Preparation and characterization of collagen-based ADSC-carrier sheets for cardiovascular application. Acta Biomaterialia, 2013. 9(4): p. 6075-6083.
15. Kazantseva, J., et al., Alternative splicing targeting the hTAF4-TAFH domain of TAF4 represses proliferation and accelerates chondrogenic differentiation of human mesenchymal stem cells. PLoS ONE, 2013. 8(10): p. e74799.
16. Choi, J.S., et al., In vitro expansion of human adipose-derived stem cells in a spinner culture system using human extracellular matrix powders. Cell and Tissue Research, 2011. 345(3): p. 415-423.
17. Suga, H., et al., IFATS collection: Fibroblast growth factor-2-induced hepatocyte growth factor secretion by adipose-derived stromal cells inhibits postinjury fibrogenesis through a c-Jun N-terminal kinase-dependent mechanism. Stem Cells, 2009. 27(1): p. 238-249.
18. Miyazaki, T., et al., Isolation of two human fibroblastic cell populations with multiple but distinct potential of mesenchymal differentiation by ceiling culture of mature fat cells from subcutaneous adipose tissue. Differentiation, 2005. 73(2): p. 69-78.
19. Meirelles, L.d.S., P.C. Chagastelles, and N.B. Nardi, Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science, 2006. 119(11): p. 2204-2213.
20. Kuznetsov, S.A., et al., Circulating skeletal stem cells. The Journal of Cell Biology, 2001. 153(5): p. 1133-1140.
21. Heathman, T.R.J., et al., Expansion, harvest and cryopreservation of human mesenchymal stem cells in a serum-free microcarrier process. Biotechnology and Bioengineering, 2015. 112(8): p. 1696-1707.
22. Heathman, T.R.J., et al., Serum-free process development: improving the yield and consistency of human mesenchymal stromal cell production. Cytotherapy, 2015. 17(11): p. 1524-1535.
| 品番 | 容量 | ||
|---|---|---|---|
| 941-0012 | Via1-Cassette™ | 100個/箱 | 生存率・細胞数測定 (NC-200・NC-3000) |
| 941-0024 | Via2-Cassette™ | 100個/箱 | 生存率・細胞数測定 (NC-202) |
| 910-3010 | Solution 10 Lysis buffer | 100mL | 2-Step Cell Cycle, 全細胞数測定(凝集細胞) |
| 910-3017 | Solution 17 | 25mL | Blood Lysis Buffer |
| 910-0010 | Lysis 1, 100 ml | 100mL | 細胞処理試薬 (Total Count) |