

Made by ISO 9001 & ISO 13485 system

Prime Tag DNA Polymerase

Cat. No.	Size	Remark	
G-1000	250 Units	with dNTPs mix., +MgCl ₂ buffer	

Package Information

G-1000	- Prime Taq DNA Polymerase (5 Units/ﷺ): 50 ﷺ - 10X Reaction buffer (with MgCl ₂): 1.0 ml - 10 mM dNTP Mixture (2.5 mM of each dNTPs): 0.5 ml
--------	--

Prime Taq DNA Polymerase is a high quality recombinant enzyme and catalyzes $5'\rightarrow 3'$ synthesis of DNA. The enzyme has no detectable $3'\rightarrow 5'$ proofreading exonuclease activity.

It is provided with 10X reaction buffer that contains PCR enhancers. This reaction buffer will enable or improve sub-optimal PCR caused by templates that have a high degree of secondary structure or that are GC-

Buffer and Reagents

Storage Buffer

20 mM Tris-HCl (pH 8.0), 100 mM KCl, 0.5 mM EDTA, 0.1 mM DTT, 0.5% Tween 20, Nonidet P-40 and 50% Glycerol

10X Reaction Buffer (with MgCl₂)

Contains Tris-HCI (pH 9.0), 20 mM MgCl₂, (NH₄)₂SO₄ and PCR enhancers. 10 mM dNTP mixture

2.5 mM of each dATP, dCTP, dGTP and dTTP

Usage Information

- A DNA fragment which is amplified by Prime Taq DNA Polymerase has A-overhang, and it enables you to do cloning by using T-vectors.
- This product is sold for research purpose only. This is not to be used for human diagnostic or drug purposes.
- All claims must be brought within expired date.

Protocol

Optimal reaction conditions, such as reaction time, temperature and amount of template DNA, may vary and must be individually determined.

- 1. Thaw 10X Reaction buffer.
- 2. Prepare a master mix.

Components	Volume	Final Conc.
10X Reaction buffer	5 <i>μ</i> l	1X
10 mM dNTP Mix. (2.5 mM of each)	1 ~ 5 µl	0.2 ~ 1.0 mM
Upstream Primer	Variable	0.1 ~ 1.0 μM
Downstream Primer	Variable	0.1 ~ 1.0 μM
Prime Taq DNA Pol. (5Unit/‡)	0.2 ~ 0.5 µl	1.0 ~ 2.5 U
Template DNA	Variable	10 fg~1 <i>μ</i> g
Sterilized D.W	Variable	-
Total Volume	50 <i>µ</i> l	-

- * Amount of template:
- Bacteriophage lambda, cosmid, plasmid: 10 fg ~ 300 ng
- Total genomic DNA: 100 ng \sim 1 μ g

- 3. Mix the master mix and dispense appropriate volumes into PCR tubes. Centrifuge the reactions in a micro-centrifuge for 10 seconds.
- 4. Perform PCR using your standard parameters (3-step cycling).

Ch	Temp. & Time		Curl
Step	Temp.	Time	Cycles
Initial denaturation	95℃	5 min.	1
Amplification	95℃ 50~68℃ 72℃	30 sec. 30 sec. 30~60 sec.	25 ~ 35
Final extension	72°C	5 min.	1

- * For PCR products longer than 3~4kb, use an extension time of approximately 1 min per Kb DNA.
- 5. Separate the PCR products by agarose gel electrophoresis and visualize with EtBr or any other means.
- Research Use Only

Store at -20℃

Avoid multiple freeze-thaw cycles and exposure to frequent temperature changes.